Бейне: Тік бұрышты координаталар жүйесі не үшін қолданылады?
2024 Автор: Miles Stephen | [email protected]. Соңғы өзгертілген: 2023-12-15 23:38
Қолдану the тікбұрышты координаталар жүйесі а-дағы нүктелерді бірегей анықтау ұшақ реттелген жұптарды (x, y) қолдану. Реттелген жұптар бастапқыға қатысты орынды көрсетеді. х- координат бастапқы нүктенің сол және оң жағындағы орынды көрсетеді. у- координат бастапқы нүктеден жоғары немесе төмен позицияны көрсетеді.
Сондай-ақ сұрақ туындайды, тікбұрышты координаталар жүйесінің мағынасы қандай?
А Декарттық координаталар жүйесі екі өлшемде (сонымен қатар а тікбұрышты координаталар жүйесі немесе ортогональ координат жүйесі ) болып табылады анықталған реттелген жұп перпендикуляр түзулер (осьтер), екі ось үшін де ұзындықтың бір бірлігі және әрбір ось үшін бағдар арқылы.
Сондай-ақ, тікбұрышты координаталар жүйесінің бөліктері қандай екенін біліңіз? А тікбұрышты координаталық жазықтық , немесе Декарттық жазықтық , екі осьтен, х осінен және у осінен жасалған. x осі көлденең ось, ал у осі тік. Осы екі осьтің қиылысу нүктесі координат басы деп аталады және әрқашан О деп аталады.
Демек, координаталар жүйесі не үшін қолданылады?
А координат жүйесі жердегі нүктенің орнын анықтау әдісі болып табылады. Көпшілігі координаттар жүйесін қолдану екі сан, а координат , нүктенің орнын анықтау. Бұл сандардың әрқайсысы нүкте мен координат деп аталатын кейбір тұрақты тірек нүктесі арасындағы қашықтықты көрсетеді.
Тік бұрышты координаталар жүйесін қалай шешуге болады?
Нүктелерді а тікбұрышты координаталар жүйесі . Нүкте қай квадрантта немесе осьте жатқанын анықтаңыз. Реттелген жұп екі айнымалысы бар теңдеудің шешімі ме, жоқ па, айтыңыз. Бір жетіспейтін мәні бар реттелген жұпты аяқтаңыз.
Ұсынылған:
Тік бұрышты координаталар жүйесінің әртүрлі бөліктері қандай?
Координаталық жазықтық төрт бөлікке бөлінеді: бірінші ширек (I квадрант), екінші ширек (II квадрант), үшінші квадрант (III квадрант) және төртінші квадрант (IV квадрант). Төрт квадранттың орнын оң жақтағы суреттен табуға болады
Тік бұрышты призма үшін неше тор бар?
Тор - үш өлшемді фигураны қалыптастыру үшін бүктеуге болатын екі өлшемді үлгі. Бұл сабақта тікбұрышты призмаларға арналған торларға назар аударылады. Кез келген призма үшін көптеген мүмкін торлар бар. Мысалы, төменде көрсетілгендей текшеге арналған 11 түрлі тор бар
Тік бұрышты жазықтық дегеніміз не?
Тікбұрышты координаталар жүйесі. Тік бұрышты координаталар жүйесі. тік бұрыш жасап қиылысатын екі нақты сан түзуінен тұрады. Бұл екі сан түзулері x және y осьтері арқылы анықталған жазық деп аталатын жазық бетті анықтайды және осы жазықтықтағы әрбір нүкте реттелген жұппен байланысты
Тік бұрышты үшбұрыштың диагоналін қалай табуға болады?
Тікбұрышты үшбұрыштың диагоналінің (оргипотенузасы) ұзындығын табу үшін екі перпендикуляр қабырғасының ұзындығын a2 +b2 = c2 формуласына ауыстырыңыз, мұндағы a және b перпендикуляр қабырғаларының ұзындығы, с - гипотенузаның ұзындығы
Тік бұрышты призманың текше бірліктерімен шамасы қандай?
Тік бұрышты призманың көлемін табу үшін оның 3 өлшемін көбейту керек: ұзындығы x ені x биіктігі. Көлем текше бірліктермен көрсетіледі