Эмпирикалық ережені пайдаланып шамамен пайызды қалай табуға болады?
Эмпирикалық ережені пайдаланып шамамен пайызды қалай табуға болады?

Бейне: Эмпирикалық ережені пайдаланып шамамен пайызды қалай табуға болады?

Бейне: Эмпирикалық ережені пайдаланып шамамен пайызды қалай табуға болады?
Бейне: Педагогтер үшін онлайн кеңес беру №3 - «Сыни тұрғыдан ойлауға үйрету» 2024, Желтоқсан
Anonim

x = 9-дан x = 13-ке дейінгі қисық астындағы ауданды табу. The Эмпирикалық ереже немесе 68-95-99,7% Ереже береді шамамен пайыз Орташа мәннің бір стандартты ауытқуына (68%), екі стандартты ауытқуға (95%) және үш стандартты ауытқуға (99,7%) сәйкес келетін деректер.

Сол сияқты, эмпирикалық ереженің формуласы қандай?

Эмпирикалық ереже (68-95-99.7): Қарапайым анықтама The эмпирикалық ереже үш бөлікке бөлуге болады: деректердің 68% орташадан бірінші стандартты ауытқу шегінде. 95% екі стандартты ауытқуға жатады. 99,7% үш стандартты ауытқуға жатады.

Екіншіден, Чебышевтің билігі қандай? The ереже жиі аталады Чебышевтікі теорема, орташа шама айналасындағы стандартты ауытқулар диапазоны туралы, статистикада. Теңсіздік үлкен пайдалылыққа ие, өйткені оны орташа және дисперсия анықталған кез келген ықтималдық үлестіріміне қолдануға болады. Мысалы, оны үлкен сандардың әлсіз заңын дәлелдеу үшін қолдануға болады.

Сондай-ақ білу керек, эмпирикалық ереже нені білдіреді?

Эмпирикалық ереже . Атап айтқанда, эмпирикалық ереже қалыпты таралу үшін: деректердің 68% бір стандартты ауытқу шегінде болады деп көрсетеді білдіреді . Деректердің 95% екі стандартты ауытқу шегінде болады білдіреді . Деректердің барлығы дерлік (99,7%) үш стандартты ауытқу шегінде болады білдіреді.

Az балл дегеніміз не?

А З - Гол – мәннің мәндер тобының орташа мәніне (орташа) қатынасының статистикасында қолданылатын, орташадан стандартты ауытқулар тұрғысынан өлшенетін сандық өлшем. Егер а З - Гол 0 болса, ол деректер нүктесінің екенін көрсетеді Гол орташа мәнге сәйкес келеді Гол.

Ұсынылған: